Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
Nat Commun ; 14(1): 7232, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963895

RESUMO

It is generally assumed that all bacteria must have at least one rRNA operon (rrn operon) on the chromosome, but some strains of the genera Aureimonas and Oecophyllibacter carry their sole rrn operon on a plasmid. However, other related strains and species have chromosomal rrn loci, suggesting that the exclusive presence of rrn operons on a plasmid is rare and unlikely to be stably maintained over long evolutionary periods. Here, we report the results of a systematic search for additional bacteria without chromosomal rrn operons. We find that at least four bacterial clades in the phyla Bacteroidota, Spirochaetota, and Pseudomonadota (Proteobacteria) lost chromosomal rrn operons independently. Remarkably, Persicobacteraceae have apparently maintained this peculiar genome organization for hundreds of millions of years. In our study, all the rrn-carrying plasmids in bacteria lacking chromosomal rrn loci possess replication initiator genes of the Rep_3 family. Furthermore, the lack of chromosomal rrn operons is associated with differences in copy numbers of rrn operons, plasmids, and chromosomal tRNA genes. Thus, our findings indicate that the absence of rrn loci in bacterial chromosomes can be stably maintained over long evolutionary periods.


Assuntos
Óperon , Óperon de RNAr , Óperon de RNAr/genética , Plasmídeos/genética , Óperon/genética , Cromossomos , Bactérias/genética , RNA Ribossômico/genética
2.
Nucleic Acids Res ; 51(15): 8085-8101, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37351576

RESUMO

Bacterial transcription by RNA polymerase (RNAP) is spatially organized. RNAPs transcribing highly expressed genes locate in the nucleoid periphery, and form clusters in rich medium, with several studies linking RNAP clustering and transcription of rRNA (rrn). However, the nature of RNAP clusters and their association with rrn transcription remains unclear. Here we address these questions by using single-molecule tracking to monitor the subcellular distribution of mobile and immobile RNAP in strains with a heavily reduced number of chromosomal rrn operons (Δrrn strains). Strikingly, we find that the fraction of chromosome-associated RNAP (which is mainly engaged in transcription) is robust to deleting five or six of the seven chromosomal rrn operons. Spatial analysis in Δrrn strains showed substantial RNAP redistribution during moderate growth, with clustering increasing at cell endcaps, where the remaining rrn operons reside. These results support a model where RNAPs in Δrrn strains relocate to copies of the remaining rrn operons. In rich medium, Δrrn strains redistribute RNAP to minimize growth defects due to rrn deletions, with very high RNAP densities on rrn genes leading to genomic instability. Our study links RNAP clusters and rrn transcription, and offers insight into how bacteria maintain growth in the presence of only 1-2 rrn operons.


Assuntos
Escherichia coli , Óperon de RNAr , Escherichia coli/metabolismo , Óperon de RNAr/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Transcrição Gênica , RNA Ribossômico/genética
3.
Genes (Basel) ; 14(5)2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37239384

RESUMO

The slow-growing, nontuberculous mycobacterium Mycobacterium kumamotonense possesses two rRNA operons, rrnA and rrnB, located downstream from the murA and tyrS genes, respectively. Here, we report the sequence and organization of the promoter regions of these two rrn operons. In the rrnA operon, transcription can be initiated from the two promoters, named P1 rrnA and PCL1, while in rrnB, transcription can only start from one, called P1 rrnB. Both rrn operons show a similar organization to the one described in Mycobacterium celatum and Mycobacterium smegmatis. Furthermore, by qRT-PCR analyses of the products generated from each promoter, we report that stress conditions such as starvation, hypoxia, and cellular infection affect the contribution of each operon to the synthesis of pre-rRNA. It was found that the products from the PCL1 promoter of rrnA play a pivotal role in rRNA synthesis during all stress conditions. Interestingly, the main participation of the products of transcription from the P1 promoter of rrnB was found during hypoxic conditions at the NRP1 phase. These results provide novel insights into pre-rRNA synthesis in mycobacteria, as well as the potential ability of M. kumamotonense to produce latent infections.


Assuntos
Precursores de RNA , Óperon de RNAr , Óperon de RNAr/genética , Sequência de Bases , Regiões Promotoras Genéticas , RNA Ribossômico/genética
4.
Mol Ecol ; 32(23): 6330-6344, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35593386

RESUMO

High-throughput sequencing has substantially improved our understanding of fungal diversity. However, the short read (<500 bp) length of current second-generation sequencing approaches provides limited taxonomic and phylogenetic resolution for species discrimination. Longer sequences containing more information are highly desired to provide greater taxonomic resolution. Here, we amplified full-length rRNA operons (~5.5 kb) and established a corresponding fungal rRNA operon database for ONT sequences (FRODO), which contains ONT sequences representing eight phyla, 41 classes, 109 orders, 256 families, 524 genera and 1116 species. We also benchmarked the optimal method for sequence classification and determined that the RDP classifier based on our FRODO database was capable of improving the classification of ONT reads, with an average of 98%-99% reads correctly classified at the genus or species level. We investigated the applicability of our approach in three representative mycobiomes, namely, the soil, marine and human gut mycobiomes, and found that the gut contains the largest number of unknown species (over 90%), followed by the marine (42%) and soil (33.8%) mycobiomes. We also observed a distinct difference in the composition of the marine and soil mycobiomes, with the highest richness and diversity detected in soils. Overall, our study provides a systematic approach for mycobiome studies and revealed that the previous methods might have underestimated the diversity of mycobiome species. Future application of this method will lead to a better understanding of the taxonomic and functional diversity of fungi in environmental and health-related mycobiomes.


Assuntos
Micobioma , Sequenciamento por Nanoporos , Humanos , Micobioma/genética , Óperon de RNAr , Filogenia , Solo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fungos/genética
5.
Water Res ; 226: 119307, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332298

RESUMO

Microbial life strategy, reflected by rRNA operon (rrn) copy number, determines microbial ecological roles. However, the relationship between microbial life strategy and the energy and nutrient flux in anaerobic digestion (AD) remains elusive. This study investigated microbial rrn copy number and expression ratio using amplicon sequencing of 16S rRNA gene and 16S rRNA, and monitored CH4 daily production to approximate the status of energy and nutrient flux in semi-continuous AD. A significantly positive correlation between the mean rrn copy number of microbial communities in digestate and CH4 daily production was detected in the control treatment fed swine manure. The reduced feedstock complexity, by replacing parts of swine manure with fructose or apple waste, weakened the correlation. When feedstock complexity was increased again, the correlation was strengthened again. Similar results were detected in mean rrn expression ratio of microbial communities. The responses of mean rrn copy number and expression ratio of communities to feedstock addition differed between the reduced feedstock complexity and the control treatment, as well as between in digestate and in straw. Our findings reveal a novel relationship between microbial community life strategy and the energy and nutrient flux, and the roles of feedstock characteristics therein in AD.


Assuntos
Esterco , Óperon de RNAr , Suínos , Animais , RNA Ribossômico 16S/genética , Anaerobiose , Variações do Número de Cópias de DNA , Nutrientes , Reatores Biológicos , Metano
6.
Nucleic Acids Res ; 50(20): 11654-11669, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36408918

RESUMO

Streptomyces are prolific producers of specialized metabolites with applications in medicine and agriculture. These bacteria possess a large linear chromosome genetically compartmentalized: core genes are grouped in the central part, while terminal regions are populated by poorly conserved genes. In exponentially growing cells, chromosome conformation capture unveiled sharp boundaries formed by ribosomal RNA (rrn) operons that segment the chromosome into multiple domains. Here we further explore the link between the genetic distribution of rrn operons and Streptomyces genetic compartmentalization. A large panel of genomes of species representative of the genus diversity revealed that rrn operons and core genes form a central skeleton, the former being identifiable from their core gene environment. We implemented a new nomenclature for Streptomyces genomes and trace their rrn-based evolutionary history. Remarkably, rrn operons are close to pericentric inversions. Moreover, the central compartment delimited by rrn operons has a very dense, nearly invariant core gene content. Finally, this compartment harbors genes with the highest expression levels, regardless of gene persistence and distance to the origin of replication. Our results highlight that rrn operons are structural boundaries of a central functional compartment prone to transcription in Streptomyces.


Assuntos
Streptomyces , Streptomyces/genética , Óperon de RNAr , Cromossomos Bacterianos/genética , RNA Ribossômico/genética
7.
Nucleic Acids Res ; 50(22): 12601-12620, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-35552441

RESUMO

Quick growth restart after upon encountering favourable environmental conditions is a major fitness contributor in natural environment. It is widely assumed that the time required to restart growth after nutritional upshift is determined by how long it takes for cells to synthesize enough ribosomes to produce the proteins required to reinitiate growth. Here we show that a reduction in the capacity to synthesize ribosomes by reducing number of ribosomal RNA (rRNA) operons (rrn) causes a longer transition from stationary phase to growth of Escherichia coli primarily due to high mortality rates. Cell death results from DNA replication blockage and massive DNA breakage at the sites of the remaining rrn operons that become overloaded with RNA polymerases (RNAPs). Mortality rates and growth restart duration can be reduced by preventing R-loop formation and improving DNA repair capacity. The same molecular mechanisms determine the duration of the recovery phase after ribosome-damaging stresses, such as antibiotics, exposure to bile salts or high temperature. Our study therefore suggests that a major function of rrn operon multiplicity is to ensure that individual rrn operons are not saturated by RNAPs, which can result in catastrophic chromosome replication failure and cell death during adaptation to environmental fluctuations.


The ability to modulate translation capacity, which resides greatly on a number of ribosomes, provides robustness in fluctuating environments. Because translation is energetically the most expensive process in cells, cells must constantly adapt the rate of ribosome production to resource availability. This is primarily achieved by regulating ribosomal RNA (rRNA) synthesis, to which ribosomal proteins synthesis is adjusted. The multiplicity of rRNA encoding operons per bacterial genome exceeds requirements for the maximal growth rates in non-stress conditions. In this study, the authors provide evidence that a major function of rRNA operon multiplicity is to ensure that individual operons are not saturated by RNA polymerases during adaptation to environmental fluctuations, which can result in catastrophic chromosome replication failure and cell death.


Assuntos
Genoma Bacteriano , Óperon de RNAr , Escherichia coli/metabolismo , Óperon , Ribossomos/genética , Ribossomos/metabolismo , RNA Bacteriano/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Instabilidade Genômica
8.
Mol Ecol Resour ; 22(6): 2304-2318, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35437888

RESUMO

High-throughput sequencing-based analysis of microbial diversity has evolved vastly over the last decade. Currently, the go-to method for studying microbial eukaryotes is short-read metabarcoding of variable regions of the 18S rRNA gene with <500 bp amplicons. However, there is a growing interest in applying long-read sequencing of amplicons covering the rRNA operon for improving taxonomic resolution. For both methods, the choice of primers is crucial. It determines if community members are covered, if they can be identified at a satisfactory taxonomic level, and if the obtained community profile is representative. Here, we designed new primers targeting 18S and 28S rRNA based on 177,934 and 21,072 database sequences, respectively. The primers were evaluated in silico along with published primers on reference sequence databases and marine metagenomics data sets. We further evaluated a subset of the primers for short- and long-read sequencing on environmental samples in vitro and compared the obtained community profile with primer-unbiased metagenomic sequencing. Of the short-read pairs, a new V6-V8 pair and the V4_Balzano pair used with a simplified PCR protocol provided good results in silico and in vitro. Fewer differences were observed between the long-read primer pairs. The long-read amplicons and ITS1 alone provided higher taxonomic resolution than V4. Together, our results represent a reference and guide for selection of robust primers for research on and environmental monitoring of microbial eukaryotes.


Assuntos
Eucariotos , Óperon de RNAr , Primers do DNA/genética , Eucariotos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica/métodos , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Óperon de RNAr/genética
9.
Microbiol Spectr ; 10(2): e0201721, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35352997

RESUMO

Recent development of long-read sequencing platforms has enabled researchers to explore bacterial community structure through analysis of full-length 16S rRNA gene (∼1,500 bp) or 16S-ITS-23S rRNA operon region (∼4,300 bp), resulting in higher taxonomic resolution than short-read sequencing platforms. Despite the potential of long-read sequencing in metagenomics, resources and protocols for this technology are scarce. Here, we describe MIrROR, the database and analysis tool for metataxonomics using the bacterial 16S-ITS-23S rRNA operon region. We collected 16S-ITS-23S rRNA operon sequences extracted from bacterial genomes from NCBI GenBank and performed curation. A total of 97,781 16S-ITS-23S rRNA operon sequences covering 9,485 species from 43,653 genomes were obtained. For user convenience, we provide an analysis tool based on a mapping strategy that can be used for taxonomic profiling with MIrROR database. To benchmark MIrROR, we compared performance against publicly available databases and tool with mock communities and simulated data sets. Our platform showed promising results in terms of the number of species covered and the accuracy of classification. To encourage active 16S-ITS-23S rRNA operon analysis in the field, BLAST function and taxonomic profiling results with 16S-ITS-23S rRNA operon studies, which have been reported as BioProject on NCBI are provided. MIrROR (http://mirror.egnome.co.kr/) will be a useful platform for researchers who want to perform high-resolution metagenome analysis with a cost-effective sequencer such as MinION from Oxford Nanopore Technologies. IMPORTANCE Metabarcoding is a powerful tool to investigate community diversity in an economic and efficient way by amplifying a specific gene marker region. With the advancement of long-read sequencing technologies, the field of metabarcoding has entered a new phase. The technologies have brought a need for development in several areas, including new markers that long-read can cover, database for the markers, tools that reflect long-read characteristics, and compatibility with downstream analysis tools. By constructing MIrROR, we met the need for a database and tools for the 16S-ITS-23S rRNA operon region, which has recently been shown to have sufficient resolution at the species level. Bacterial community analysis using the 16S-ITS-23S rRNA operon region with MIrROR will provide new insights from various research fields.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Óperon de RNAr , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Análise de Sequência de DNA/métodos , Óperon de RNAr/genética
10.
Microbiol Spectr ; 10(1): e0222521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34985328

RESUMO

Chromids (secondary chromosomes) in bacterial genomes that are present in addition to the main chromosome appear to be evolutionarily conserved in some specific bacterial groups. In rare cases among these groups, a small number of strains from Rhizobiales and Vibrionales were shown to possess a naturally fused single chromosome that was reported to have been generated through intragenomic homologous recombination between repeated sequences on the chromosome and chromid. Similar examples have never been reported in the family Burkholderiaceae, a well-documented group that conserves chromids. Here, an in-depth genomic characterization was performed on a Burkholderiaceae bacterium that was isolated from a soil bacterial consortium maintained on diesel fuel and mutagenic benzo[a]pyrene. This organism, Cupriavidus necator strain KK10, was revealed to carry a single chromosome with unexpectedly large size (>6.6 Mb), and results of comparative genomics with the genome of C. necator N-1T indicated that the single chromosome of KK10 was generated through fusion of the prototypical chromosome and chromid at the rRNA operons. This fusion hypothetically occurred through homologous recombination with a crossover between repeated rRNA operons on the chromosome and chromid. Some metabolic functions that were likely expressed from genes on the prototypical chromid region were indicated to be retained. If this phenomenon-the bacterial chromosome-chromid fusion across the rRNA operons through homologous recombination-occurs universally in prokaryotes, the multiple rRNA operons in bacterial genomes may not only contribute to the robustness of ribosome function, but also provide more opportunities for genomic rearrangements through frequent recombination. IMPORTANCE A bacterial chromosome that was naturally fused with the secondary chromosome, or "chromid," and presented as an unexpectedly large single replicon was discovered in the genome of Cupriavidus necator strain KK10, a biotechnologically useful member of the family Burkholderiaceae. Although Burkholderiaceae is a well-documented group that conserves chromids in their genomes, this chromosomal fusion event has not been previously reported for this family. This fusion has hypothetically occurred through intragenomic homologous recombination between repeated rRNA operons and, if so, provides novel insight into the potential of multiple rRNA operons in bacterial genomes to lead to chromosome-chromid fusion. The harsh conditions under which strain KK10 was maintained-a genotoxic hydrocarbon-enriched milieu-may have provided this genotype with a niche in which to survive.


Assuntos
Burkholderiaceae/genética , Cromossomos Bacterianos/genética , Genoma Bacteriano , Óperon de RNAr , Burkholderiaceae/classificação , Genômica , RNA Bacteriano/genética , Recombinação Genética , Replicon
11.
Nat Commun ; 13(1): 175, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013303

RESUMO

Nutrient scarcity is pervasive for natural microbial communities, affecting species reproduction and co-existence. However, it remains unclear whether there are general rules of how microbial species abundances are shaped by biotic and abiotic factors. Here we show that the ribosomal RNA gene operon (rrn) copy number, a genomic trait related to bacterial growth rate and nutrient demand, decreases from the abundant to the rare biosphere in the nutrient-rich coastal sediment but exhibits the opposite pattern in the nutrient-scarce pelagic zone of the global ocean. Both patterns are underlain by positive correlations between community-level rrn copy number and nutrients. Furthermore, inter-species co-exclusion inferred by negative network associations is observed more in coastal sediment than in ocean water samples. Nutrient manipulation experiments yield effects of nutrient availability on rrn copy numbers and network associations that are consistent with our field observations. Based on these results, we propose a "hunger games" hypothesis to define microbial species abundance rules using the rrn copy number, ecological interaction, and nutrient availability.


Assuntos
Organismos Aquáticos/genética , Interações Microbianas/genética , Microbiota/genética , Óperon de RNAr , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Ecossistema , Dosagem de Genes , Interações Microbianas/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Nutrientes/análise , Nutrientes/farmacologia , Água do Mar/microbiologia
12.
Sci Rep ; 11(1): 11884, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088956

RESUMO

Microbial communities are commonly studied by using amplicon sequencing of part of the 16S rRNA gene. Sequencing of the full-length 16S rRNA gene can provide higher taxonomic resolution and accuracy. To obtain even higher taxonomic resolution, with as few false-positives as possible, we assessed a method using long amplicon sequencing targeting the rRNA operon combined with a CCMetagen pipeline. Taxonomic assignment had > 90% accuracy at the species level in a mock sample and at the family level in equine fecal samples, generating similar taxonomic composition as shotgun sequencing. The rRNA operon amplicon sequencing of equine fecal samples underestimated compositional percentages of bacterial strains containing unlinked rRNA genes by a fourth to a third, but unlinked rRNA genes had a limited effect on the overall results. The rRNA operon amplicon sequencing with the A519F + U2428R primer set was able to detect some kind of archaeal genomes such as Methanobacteriales and Methanomicrobiales, whereas full-length 16S rRNA with 27F + 1492R could not. Therefore, we conclude that amplicon sequencing targeting the rRNA operon captures more detailed variations of equine microbiota.


Assuntos
DNA Intergênico , Microbioma Gastrointestinal , Microbiota , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Análise de Sequência de DNA/métodos , Animais , Bactérias/genética , DNA Bacteriano/genética , Fezes , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Cavalos , Filogenia , Análise de Sequência de DNA/instrumentação , Óperon de RNAr
13.
Parasitol Res ; 120(6): 2037-2046, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33893550

RESUMO

The first data on a whole mitochondrial genome of Haploporidae, Parasaccocoelium mugili (Digenea: Haploporata: Haploporidae) was generated using the next-generation sequencing (NGS) approach. We sequenced the complete mitochondrial DNA (mtDNA) and ribosomal operon of Parasaccocoelium mugili, intestine parasite of mullet fish. The mtDNA of P. mugili contained 14,021 bp, including 12 protein-coding genes, two ribosomal genes, 22 tRNA genes, and non-coding region. The ribosomal operon of P. mugili was 8308 bp in length, including 18S rRNA gene (1981 bp), ITS1 rDNA (955 bp), 5.8S rRNA gene (157 bp), ITS2 rDNA (268 bp), 28S rRNA gene (4180 bp), and ETS (767 bp). We used the mtDNA protein-coding regions to make phylogenetic reconstructions of Haploporidae. Additionally, we performed the sequence cluster analysis based on codon usage bias of most of currently available mitochondrial genome data for trematodes. The observed gene arrangement in mtDNA sequence of P. mugili is identical to those of Plagiorchis maculosus (Rudolphi, 1802). Results of maximum likelihood (ML) phylogenetic analysis showed that P. mugili was closely related to Paragonimus species from the suborder Xiphidiata. The results of sequence cluster analysis based on codon usage bias showed that P. mugili has the highest similarity with Plagiorchis maculosus (Xiphidiata). Our results do not contradict to proposing a new suborder for Haploporoidea-Haploporata. On the basis of obtained results, the relationship between mitochondrial protein-coding gene rearrangements and synonymous nucleotide substitutions in mitochondrial genomes has been suggested.


Assuntos
Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala , Trematódeos/genética , Animais , DNA Mitocondrial/genética , DNA Ribossômico/genética , Doenças dos Peixes/parasitologia , Filogenia , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA , Smegmamorpha/parasitologia , Trematódeos/classificação , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/veterinária , Óperon de RNAr/genética
14.
PLoS One ; 16(3): e0247594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33760841

RESUMO

Snow and ice present challenging substrates for cellular growth, yet microbial snow communities not only exist, but are diverse and ecologically impactful. These communities are dominated by green algae, but additional organisms, such as fungi, are also abundant and may be important for nutrient cycling, syntrophic interactions, and community structure in general. However, little is known about these non-algal community members, including their taxonomic affiliations. An example of this is Chionaster nivalis, a unicellular fungus that is morphologically enigmatic and frequently observed in snow communities globally. Despite being described over one hundred years ago, the phylogeny and higher-level taxonomic classifications of C. nivalis remain unknown. Here, we isolated and sequenced the internal transcribed spacer (ITS) and the D1-D2 region of the large subunit ribosomal RNA gene of C. nivalis, providing a molecular barcode for future studies. Phylogenetic analyses using the ITS and D1-D2 region revealed that C. nivalis is part of a novel lineage in the class Tremellomycetes (Basidiomycota, Agaricomycotina) for which a new order Chionasterales ord. nov. (MB838717) and family Chionasteraceae fam. nov. (MB838718) are proposed. Comparisons between C. nivalis and sequences generated from environmental surveys revealed that the Chionasterales are globally distributed and probably psychrophilic, as they appear to be limited to the high alpine and arctic regions. These results highlight the unexplored diversity that exists within these extreme habitats and emphasize the utility of single-cell approaches in characterizing these complex algal-dominated communities.


Assuntos
Basidiomycota/classificação , Basidiomycota/genética , Ecossistema , Genes Fúngicos , RNA Fúngico/genética , RNA Ribossômico/genética , Regiões Árticas , Sequência de Bases , Técnicas de Tipagem Micológica/métodos , Filogenia , Neve/microbiologia , Óperon de RNAr
15.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585862

RESUMO

Due to their universal presence and high sequence conservation, ribosomal RNA (rRNA) sequences are used widely in phylogenetics for inferring evolutionary relationships between microbes and in metagenomics for analyzing the composition of microbial communities. Most microbial genomes encode multiple copies of rRNA genes to supply cells with sufficient capacity for protein synthesis. These copies typically undergo concerted evolution that keeps their sequences identical, or nearly so, due to gene conversion, a type of intragenomic recombination that changes one copy of a homologous sequence to exactly match another. Widely varying rates of rRNA gene conversion have previously been estimated by comparative genomics methods and using genetic reporter assays. To more directly measure rates of rRNA intragenomic recombination, we sequenced the seven Escherichia coli rRNA operons in 15 lineages that were evolved for ∼13,750 generations with frequent single-cell bottlenecks that reduce the effects of selection. We identified 38 gene conversion events and estimated an overall rate of intragenomic recombination within the 16S and 23S genes between rRNA copies of 3.6 × 10-4 per genome per generation or 8.6 × 10-6 per rRNA operon per homologous donor operon per generation. This rate varied only slightly from random expectations at different sites within the rRNA genes and between rRNA operons located at different positions in the genome. Our accurate estimate of the rate of rRNA gene conversions fills a gap in our quantitative understanding of how ribosomal sequences and other multicopy elements diversify and homogenize during microbial genome evolution.


Assuntos
Escherichia coli , Conversão Gênica , Escherichia coli/genética , Óperon , RNA Ribossômico , RNA Ribossômico 16S , Óperon de RNAr
16.
Nat Commun ; 12(1): 599, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500394

RESUMO

The ribosome represents a promising avenue for synthetic biology, but its complexity and essentiality have hindered significant engineering efforts. Heterologous ribosomes, comprising rRNAs and r-proteins derived from different microorganisms, may offer opportunities for novel translational functions. Such heterologous ribosomes have previously been evaluated in E. coli via complementation of a genomic ribosome deficiency, but this method fails to guide the engineering of refractory ribosomes. Here, we implement orthogonal ribosome binding site (RBS):antiRBS pairs, in which engineered ribosomes are directed to researcher-defined transcripts, to inform requirements for heterologous ribosome functionality. We discover that optimized rRNA processing and supplementation with cognate r-proteins enhances heterologous ribosome function for rRNAs derived from organisms with ≥76.1% 16S rRNA identity to E. coli. Additionally, some heterologous ribosomes undergo reduced subunit exchange with E. coli-derived subunits. Cumulatively, this work provides a general framework for heterologous ribosome engineering in living cells.


Assuntos
Escherichia coli/genética , Biossíntese de Proteínas/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Biologia Sintética/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Filogenia , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Óperon de RNAr/genética
17.
J Microbiol Methods ; 182: 106150, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33503485

RESUMO

Screening for the Rodentibacter species is part of the microbiologic quality assurance programs of laboratory rodents all over the world. Nevertheless, currently there are no PCR amplification techniques available for the diagnostic of R. ratti, R. heidelbergensis and of a Rodentibacter related ß-haemolytic taxon. The aim of this study was to utilize the differences in the sequence of the Internal Transcribed Spacer (ITS) regions of R. pneumotropicus, R. heylii, R. ratti, R. heidelbergensis and of the ß-haemolytic Rodentibacter taxon for the design of specific PCR assays for these species. The ITSile+ala sequence variations allowed the design of specific forward and reverse primers for each species included, that could be combined in different multiplex assays. The performance characteristics specificity and sensitivity registered for each primer pair against a diverse collection of Pasteurellaceae isolated from rats and mice and of further non-Pasteurellaceae strains was 100% for all five Rodentibacter species included. In addition, the PCR assays displayed high limits of detection and could be successfully used for detection of Rodentibacter spp. DNA in clinical swabs of laboratory mice and rats. Overall, the assays described here represent the first PCRs able to diagnose R. ratti, R. heidelbergensis and the ß-haemolytic Rodentibacter taxon, whose diagnostic to species level could further facilitate better understanding of their geographic distribution, prevalence, and biology in the future.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Infecções por Pasteurellaceae , Pasteurellaceae , RNA Ribossômico 16S/isolamento & purificação , Roedores/microbiologia , Óperon de RNAr , Animais , Camundongos , Pasteurellaceae/genética , Pasteurellaceae/isolamento & purificação , Infecções por Pasteurellaceae/diagnóstico , Infecções por Pasteurellaceae/microbiologia , Infecções por Pasteurellaceae/veterinária , Ratos
18.
ISME J ; 14(2): 597-608, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31712737

RESUMO

Ribosomes are essential to cellular life and the genes for their RNA components are the most conserved and transcribed genes in bacteria and archaea. Ribosomal RNA genes are typically organized into a single operon, an arrangement thought to facilitate gene regulation. In reality, some bacteria and archaea do not share this canonical rRNA arrangement-their 16S and 23S rRNA genes are separated across the genome and referred to as "unlinked". This rearrangement has previously been treated as an anomaly or a byproduct of genome degradation in intracellular bacteria. Here, we leverage complete genome and long-read metagenomic data to show that unlinked 16S and 23S rRNA genes are more common than previously thought. Unlinked rRNA genes occur in many phyla, most significantly within Deinococcus-Thermus, Chloroflexi, and Planctomycetes, and occur in differential frequencies across natural environments. We found that up to 41% of rRNA genes in soil were unlinked, in contrast to the human gut, where all sequenced rRNA genes were linked. The frequency of unlinked rRNA genes may reflect meaningful life history traits, as they tend to be associated with a mix of slow-growing free-living species and intracellular species. We speculate that unlinked rRNA genes may confer selective advantages in some environments, though the specific nature of these advantages remains undetermined and worthy of further investigation. More generally, the prevalence of unlinked rRNA genes in poorly-studied taxa serves as a reminder that paradigms derived from model organisms do not necessarily extend to the broader diversity of bacteria and archaea.


Assuntos
Archaea/genética , Bactérias/genética , Óperon de RNAr/genética , Microbiologia Ambiental , Microbioma Gastrointestinal , Genes de RNAr , Humanos , Metagenômica , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 23S
19.
BMC Evol Biol ; 19(1): 235, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881939

RESUMO

BACKGROUND: Understanding the phylogenetic relationships among species is one of the main goals of systematic biology. Simultaneously, credible phylogenetic hypotheses are often the first requirement for unveiling the evolutionary history of traits and for modelling macroevolutionary processes. However, many non-model taxa have not yet been sequenced to an extent such that statistically well-supported molecular phylogenies can be constructed for these purposes. Here, we use a genome-skimming approach to extract sequence information for 15 mitochondrial and 2 ribosomal operon genes from the cheilostome bryozoan family, Adeonidae, Busk, 1884, whose current systematics is based purely on morphological traits. The members of the Adeonidae are, like all cheilostome bryozoans, benthic, colonial, marine organisms. Adeonids are also geographically widely-distributed, often locally common, and are sometimes important habitat-builders. RESULTS: We successfully genome-skimmed 35 adeonid colonies representing 6 genera (Adeona, Adeonellopsis, Bracebridgia, Adeonella, Laminopora and Cucullipora). We also contributed 16 new, circularised mitochondrial genomes to the eight previously published for cheilostome bryozoans. Using the aforementioned mitochondrial and ribosomal genes, we inferred the relationships among these 35 samples. Contrary to some previous suggestions, the Adeonidae is a robustly supported monophyletic clade. However, the genera Adeonella and Laminopora are in need of revision: Adeonella is polyphyletic and Laminopora paraphyletically forms a clade with some Adeonella species. Additionally, we assign a sequence clustering identity using cox1 barcoding region of 99% at the species and 83% at the genus level. CONCLUSIONS: We provide sequence data, obtained via genome-skimming, that greatly increases the resolution of the phylogenetic relationships within the adeonids. We present a highly-supported topology based on 17 genes and substantially increase availability of circularised cheilostome mitochondrial genomes, and highlight how we can extend our pipeline to other bryozoans.


Assuntos
Briozoários/classificação , Briozoários/genética , Animais , Evolução Biológica , Evolução Molecular , Genoma Mitocondrial , Filogenia , Análise de Sequência de DNA , Óperon de RNAr
20.
ACS Synth Biol ; 8(8): 1901-1912, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31298831

RESUMO

Ribosomal RNA (rRNA) operons have recently been identified as promising sites for chromosomal integration of genetic elements in Pseudomonas putida, a bacterium that has gained considerable popularity as a microbial cell factory. We have developed a tool for targeted integration of recombinant genes into the rRNA operons of various Pseudomonas strains, where the native context of the rRNA clusters enables effective transcription of heterologous genes. However, a sufficient translation of foreign mRNA  transcriptionally fused to rRNA required optimization of RNA secondary structures, which was achieved utilizing synthetic ribozymes and a bicistronic design. The generated tool further enabled the characterization of the six rRNA promoter units of P. putida S12 under different growth conditions. The presence of multiple, almost identical rRNA operons in Pseudomonas also allowed the integration of multiple copies of heterologous genetic elements. The integration of two expression cassettes and the resulting disruption of rRNA units only moderately affects growth rates, and the constructs were highly stable over more than 160 generations.


Assuntos
DNA Ribossômico/metabolismo , DNA Ribossômico/genética , Pseudomonas/genética , Pseudomonas/metabolismo , RNA Catalítico/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Biologia Sintética , Óperon de RNAr/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...